

EXPLORING PHYSICS STAGE 3				
Particles, Waves and Quanta: Set 10				
Set	Problem	Solution		
10	2a			
	2b			
	3a	It remains unchanged		
	3b 3c	It remains unchanged $n = \frac{325 \text{ m s}^{-1}}{1000000000000000000000000000000000$		
		$f = \frac{v}{\lambda} = \frac{355 \text{ m/s}}{10 \text{ m}} = 34 \text{ Hz}$		
		Use same method for $\lambda = 0.02$ m, f = 17 kHz		
	4	The blind person has learned to use the sounds around them to indicate where obstacles are.		
	5a	$\lambda = \frac{v}{2} = \frac{335 \text{ m s}^{-1}}{2} = 1.9 \text{ mm}$		
		R_{air} f 180 × 10 ³ Hz Similarly = 1500 m s ⁻¹ loads to $\lambda = 8.1$ mm in years		
		The increased wavelength of ultrasound in water makes it more difficult for the		
		dolphins to resolve fine detail.		
	5c	The bats that are flying high and fast need to use a louder signal to ensure that they hear		
		the reflection. Bats flying slowly don't need the reflected sounds to travel over long distances so can use a quieter sound.		
	6	0.1 s is time to travel to bottom and back, so time to travel to depth is 0.05 s.		
	70	speed \times time = distance = 1456 m s ⁻¹ \times 0.05 s = 72.8 m		
	/a	number of pulses = $\frac{0.23}{0.002}$ s		
	71.	100		
	/0	$angle of scan 40^{\circ}$		
		angle between pulses = $\frac{1}{number of pulses} = \frac{1}{50}$		
	70	Angle between pulses = 0.8°		
	/0	number of scans = $\frac{\iota une}{time \ ner \ scan} = \frac{1}{0} \frac{1}{1} \frac{s}{1}$		
		10 scans in 1 second		
	8	A lower frequency has a longer wavelength and are diffracted more so travel over		
	9	The water is getting shallower		
		The water is getting shanower.		

EXPLOR	ST SCIENCE TE SOF WE ST RING PHY eles, Way	VICS STAGE 3 Ves and Quanta: Set 10
Set	Problem	Solution
10	14b	$\lambda_{1} = 4L$ $\lambda_{1} = 4L$ $f_{1} = \frac{v}{4L}$
		A A $\lambda_3 = \frac{4L}{3}$ $f_3 = \frac{3v}{4L} = 3f_1$
		A A A A $\lambda_5 = \frac{4L}{5}$ $f_5 = \frac{5v}{4L} = 5f_1$
	15	288 Hz, 320 Hz, 341 Hz, 384 Hz, 427 Hz, 480 Hz, 512 Hz (in each case multiply frequency of first harmonic by the ratio)
	16a	Piano
	16b	Bass
	16c	Piano
	16d	Baritone
	17	The signal on the right is showing a sound of single frequency. The instrument on the left produces a sound made of two notes of the same frequency as each other but ½ the frequency of the signal on the right. Where there are 2 frequencies one is louder than the single frequency sound and one is quieter. The signal on the left has a longer wavelength
	18a	λ = twice the distance between troughs